Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Crash Pulse Prediction Via Inverse Filtering

2001-10-16
2001-01-3110
This paper reports a study on the use of response inverse filtering (RIF) methodology for crash pulse prediction. RIF is based on the finite impulse response (FIR) and inverse filtering (IF) methods. The FIR coefficients obtained by the digital convolution theory and the least squared error approach serve to transfer response from the input (impacting or excitation) side to the output (non-impacting or receiving) side. The FIR method, a process of low pass filtering (e.g. truck body mount), is commonly used in predicting the non-impacting side (e.g. truck body or cab) response with the input excitation in the impacting side (e.g. truck frame). The accuracy in the validation and prediction via FIR transfer function depends on the frequency contents of the input and output accelerometer data from which the transfer function is developed. The prediction accuracy is low if the output data contain higher frequency components than the input.
Technical Paper

Crush Design/Analysis of Composite Vehicle Front End Structure

2002-03-04
2002-01-1299
Although the crush of composite tubes has been studied extensively in static and dynamic impacts, the mode of collapse and energy absorption data for the next level of automotive components, sub-structure, or structures have been limited. In this study design/analysis were conducted on glass/vinylester CSM and braided composite Ford-Escort front end. The investigation consists of energy assessments; crush strength prediction and mode of collapse for the lower and upper rails structure with apron. Component models for lower and upper rails were evaluated for design iteration using stability code COMPCOLLAPSE to determine the maximum and average crush loads. A sub-structure consisting of both rails and apron with and without foam were analyzed using nonlinear collapsible beam code VCRUSH. The result of the analysis showed good guidelines for design.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
Technical Paper

Analysis of a Frontal Rail Structure in a Frontal Collision

2002-03-04
2002-01-0688
In the course of developing a body-on-frame vehicle for barrier crash performance, automotive manufacturers must take into account numerous regulatory and corporate requirements. One of the most common barrier crash modes is the perpendicular front barrier crash used to verify compliance to F/CMVSS 208. The frontal rail or “horn” is the primary component that absorbs a significant amount of the vehicle's crash energy. The frontal rail collapse determines the vehicle deceleration. This paper evaluates several frontal horn designs for perpendicular front barrier impacts. Two basic frontal rail architectures are evaluated: a uniform rectangular cross section and a tapered cross section. For a 35 mph (15.65 m/s) impact test condition, a parametric design study was commenced to evaluate the affect of gauges, convolutions, triggers, and initiating holes for a total of eleven configurations.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

Criteria for Predicting Skid Line by Simulation

2017-03-28
2017-01-0300
The risk of skid lines for Class A panels has to be assessed before releasing the die development for hard tooling. Criteria are needed to predict skid lines in the formability evaluation stage to avoid expensive changes to tooling and process for resolving skid line issue in production. In this study, criteria using three different measured parameters were developed and validated. A draw-stretch-draw (DSD) test procedure was developed to generate skid lines on lab samples for the physical evaluation. This was done using tooling with various die entry radii and different draw beads. The skid line severity of lab samples was rated by specialists in the inspection of automotive outer panel surface quality. The skid line rating was correlated with geometric measurements of the lab samples after the DSD test. The sensitivity of the appearance of skid lines to tooling and process parameter variations was identified.
Technical Paper

Characterization of 6XXX Series Aluminum Extrusions Using Digital Image Correlation (DIC) technique

2017-03-28
2017-01-0316
Aluminum extrusions are used in the automotive industry for body structure applications requiring cross-section design flexibility, high section stiffness, and high strength. Heat-treatable 6xxx series extrusion alloys have typically been used in automotive due to commercial availability, competitive cost, high strength, and impact performance. This paper presents a characterization study of mechanical properties of 6xxx series aluminum extrusions using digital image correlation (DIC). DIC has been used to capture spatial strain distribution and its evolution in time during material deformation. The materials of study were seamless and structural 6061 and 6082 extrusions. The alloys have been tensile tested using an MTS load frame with a dual optical camera system to capture the stereoscopic digital images. Notable results include the differing anisotropy of seamless and structural extrusions, as well as the influence of artificial aging on anisotropy.
Technical Paper

Creating 3D Virtual Driving Environments for Simulation-Aided Development of Autonomous Driving and Active Safety

2017-03-28
2017-01-0107
Recreating traffic scenarios for testing autonomous driving in the real world requires significant time, resources and expense, and can present a safety risk if hazardous scenarios are tested. Using a 3D virtual environment to enable testing of many of these traffic scenarios on the desktop or cluster significantly reduces the amount of required road tests. In order to facilitate the development of perception and control algorithms for level 4 autonomy, a shared memory interface between MATLAB, Simulink, and Unreal Engine 4 can send information (such as vehicle control signals) back to the virtual environment. The shared memory interface conveys arbitrary numerical data, RGB image data, and point cloud data for the simulation of LiDAR sensors.
Technical Paper

Improve Frame Assembly Flexibility with Low Investment

2017-11-07
2017-36-0132
Commercial vehicles are being developed for long decades in Brazil creating a deep background on manufacturing process. With the current scenario a variety of different vehicles specifications (weight capacity, load distribution, torque, size, etc.) are being required by the market. Joints with bolts and nuts are the engineering solution for the most of the problems found in automotive engineering regarding commercial vehicles. Screw processes were made during the last 150 years. Nowadays current frame modifications on aftermarket are made with arc weld process that affects directly the material properties and the process needs to be performed by critical personal with training and capacity. In addition cost and timing does not fit for the best equation on how to proceed with the modifications. The solution proposed brings more flexibility on frame assemblies that can be extended to other products.
Technical Paper

Design of Automotive Structures Using Multi-Model Optimization

2017-03-28
2017-01-1342
The use of structural optimization in the design of automotive structures is increasingly common. However, it is often challenging to apply these methods simultaneously for different requirements or model configurations. Multi-model optimization (MMO) aims to simplify the iterative design process associated with optimizing multiple parts or configurations with common design variables especially when conflicting requirements exist. In this paper, the use of MMO is demonstrated to evaluate the feasibility of an automotive door concept using an alternative material.
Technical Paper

Residual Effects of Metal Forming on Seat Belt Pull Analysis Results

2017-03-28
2017-01-1307
Automotive industries are emphasizing more and more on occupant safety these days, due to an increase in awareness and demand to achieve high safety standards. They are dependent on simulation tools to predict the performance of subsystems more accurately. The challenges being encountered are designs which are getting more complex and limitations in incorporating all real-life scenarios, such as to include all manufacturing considerations like forming and welding effects. Latest versions of solvers are slowly introducing new options to include these actual scenarios. Ls-Dyna is one of the explicit solvers to introduce these possibilities. The process of including stamping details into crash simulation is already being performed in the automotive industry. However, for seatbelt pull analysis, this has not been explored much.
Technical Paper

Pedestrian Head Impact Time Estimate based on Vehicle Geometric Parameters

2017-03-28
2017-01-1453
Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
Technical Paper

Functional Safety for Battery Monitoring Integrated Circuits

2017-03-28
2017-01-1202
The Battery Monitoring Integrated Circuit (BMIC) is a key technology for Battery Electronics in the electrification of vehicles. Generally speaking, every production hybrid, plug-in hybrid, and battery electric vehicle uses some type of BMIC to monitor the voltage of each lithium battery cell. In order to achieve Functional Safety for the traction battery packs for these electrified vehicles, most designs require higher ASIL ratings for the BMIC such as C or D. For the entire market of available BMIC’s, there is a generic feature set that can be found on almost every IC on the market, such as a front end multiplexer, one or more precision references, one or more Analog to Digital (A/D) converters, a power supply, communications circuits, and window comparators. There is also a fairly consistent suite of self-diagnostics, available on just about every available BMIC, to detect failures and enable achievement of the appropriate ASIL rating.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Bumper on Striker: Improve Customer Perception Regarding Door Closing Sound Quality

2017-11-07
2017-36-0327
Did you had opportunity to hear any unpleasant noise when closing some vehicle door? In some cases reminds a metallic touch condition, in other cases reminds several components loose inside the door. The fact is that this kind of noise is definitely unpleasant to the human ears. The good news is that this undesirable condition can be solved easily through of add a soft bumper in the striker; however, needs to pay attention in the material properties and tolerance stack-up conditions to avoid generate side effect, like as high door closing efforts, break parts, lose parts, etc.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

Modeling Energy Absorption and Deformation of Multicorner Columns in Lateral Bending

2006-04-03
2006-01-0123
The frame rail has an impact on the crash performance of body-on-frame (BOF) and uni-body vehicles. Recent developments in materials and forming technology have prompted research into improving the energy absorption and deformation mode of the frame rail design. It is worthwhile from a timing and cost standpoint to predict the behavior of the front rail in a crash situation through finite element techniques. This study focuses on improving the correlation of the frame component Finite Element model to physical test data through sensitivity analysis. The first part of the study concentrated on predicting and improving the performance of the front rail in a frontal crash [1]. However, frame rails in an offset crash or side crash undergo a large amount of bending. This paper discusses appropriate modeling and testing procedures for front rails in a bending situation.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

2005-04-11
2005-01-0702
The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

2006-04-03
2006-01-0959
Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
X